JPL ANALYTICAL CHEMISTRY LABORATORY

Analytical Chemistry and Materials Development Group 3531 Propulsion and Materials Section 3530

To: Jodi Fauver 11-09-11

From: Jerami Mennella

Subject: 1101070, BSC4 Chamber Cleaning FTIR Samples (Box 1)

Purpose

The purpose is to determine the level and identity of molecular (oily) contamination.

Method

LVR Analysis

The low volatility residue (LVR) was analyzed using Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy (1). Blank samples were run along with the samples (2). FTIR provides chemical functional group information for quantitative analysis and qualitative identification of materials. The analysis followed the JPL ACL-120 procedure that complies with IEST-STD-CC1246D (3) and is sensitive to stringent levels (4).

Results

PARTS				SAMPLES				LVR Analysis Results	
#	Part No.	SN	Description	#	Type	Description	Sampled Area	Chemical Functional Group	Total Amount (μg / cm²)
1	S21		Pre-work sample taken 10/17/11 on section C3	1	Surface	Chamber Wall	1 SQ. FT	AHC	< 0.02
2	S22		Pre-work sample taken 10/17/11 on section U12	2	Surface	Chamber Wall	1 SQ. FT	AHC, Ester	< 0.02
3	S23		Pre-work sample taken 10/17/11 on section M5	3	Surface	Chamber Wall	1 SQ. FT	Ester, AHC	< 0.02
4	S24		Pre-work sample taken 10/17/11 on section L8	4	Surface	Chamber Wall	1 SQ. FT	Ester, AHC	< 0.02
5	S25		Pre-work sample taken 10/17/11 on section DN 3&4	5	Surface	Chamber Wall	1 SQ. FT	Ester, AHC	0.1
6	S26		Pre-work sample taken 10/17/11 on section F9&10	6	Surface	Chamber Wall	1 SQ. FT	Ester, AHC	0.4
7	S27		Pre-work sample taken 10/17/11 on center of floor	7	Surface	Chamber Wall	1 SQ. FT	Ester, AHC	< 0.02
8	S28		Pre-work sample taken 10/28/11 on dome section W4 horiz weld	8	Surface	Chamber Wall	90 SQ. IN	Ester, AHC	< 0.02
9	S29		Pre-work sample taken 10/28/11 on dome section W8 where green goopie found	9	Surface	Chamber Wall	1 SQ. FT	Ester, AHC	0.3
10	S30		Post-work sample taken 10/28/11 on dome section W4 horz weld	10	Surface	Chamber Wall	90 SQ. IN	AHC, Ester	< 0.02

Terminology:
AHC: Aliphatic hydrocarbon, base oil of common lubricants Esters: common sources are from plasticizers and fingerprints μg/cm²: micrograms per square centimeter

References and Notes

- 1. M. S. Anderson et al "Analysis of Semi-Volatile Residues Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy" in Optical System Contamination: Effects, Measurements, and Control VII; July 2002, edited by Phillip T. C. Chen and O. Manuel Lee; Proceedings of the SPIE, Vol. 4774, pp. 251-261, (2002).
- 2. The wipe blanks are less than 10% the amount in the sample and this is subtracted from the reported sample amount. High blanks (greater than 10% of the sample) are noted in the report. A typical solvent wipe has a detection limit of $\sim 0.005 \,\mu\text{g/cm}^2$ of removed residue from a 100cm^2 sample. Note this limit is well below the adventitious carbon level (ref. 4). Lower limits are possible using modified methods.
- 3. The analysis conforms to the Institute of Environmental Science and Technology (IEST), Contamination Control Division Document IEST 1246D "Product Cleanliness Levels and Contamination Control Program". The contamination limits are generally set by Contamination Control Engineering. At typical limit is "Level A" (IEST-STD-CC1246D) and this is 1 microgram per square centimeter (µg/cm²) and this corresponds to an average film thickness of 100 angstroms (assuming a density of 1.0). In many cases more stringent limits apply (4).
- 4. Very clean surfaces, $\leq 0.02~\mu g/cm^2$, with mono-molecular layers or less are more complex to describe when cleaning or analyzing. Carbon/hydrocarbon based substances are known to rapidly (within ~1 hour) accumulate on most, if not all, freshly exposed surfaces. This "adventitious" carbon is well documented in clean rooms and vacuum systems and compositionally varies by environment. Adventitious carbon is a discontinuous layer of approximately ~0.2 nanometers thick or ~0.02 $\mu g/cm^2$ up to 0.1 $\mu g/cm^2$ (for $\rho = 1$). The last mono-layer fractions may in some cases be strongly adsorbed to the surface as a "corrosion" layer. Therefore solvent based sampling methods may not remove these fractions, particularly if the surface is porous. When specifying cleanliness level to less than A/10 IEST-STD-CC1246D (0.1 $\mu g/cm^2$) these monolayer effects become more significant. See also: H. Piao and N. S. McIntyre, "Adventitious carbon growth on aluminum and gold–aluminum alloy surfaces", *Surface and Interface Analysis*, 2002; 33: 591–594.